ππ ππππ+π-π π π ,πππ‘,π‘πππ( π πππΈ π₯π ππ-ππ£ππ ππ¦ππππ£ ππ£π π ππππππ‘π π£π, ππππ π₯ππ πππ₯ππ£πππ₯ππ πππ ππ ππ (π.π., πππ), π₯πππ π₯ππ π.π. ππ π¦ππ₯π£πͺ ππ ππ (π), ππ πππ π¨ππ ππͺ π₯ππ π₯π ππ-ππ£ππ ππ¦ππππ£. βπππ£πππ€ πππͺ ππ‘π‘ππͺ. ππ ππππ ππ πππ₯ππ£πππ₯ππ πππ πππππ-π π π ,πππ‘,π‘πππ(πππΈ) ππ£π π ππππππ‘π π£π, π€π₯ππ£π₯ ππͺ πππππππ π.π π π β’(πππ‘)β’π‘πππ π₯ππ πππ₯ππ£πππ₯ππ πππ πππππ€π€ ππ ππ "πππ", "πππ", π π£ "πππ ", πππ‘ππππππ π π πͺπ π¦π£ π€ππ£π§πππ π‘π£π π§ππππ£ (π.π., πππππ₯ππ, ππ₯ππ£βπ¦π, π π£ ππ). βππ©π₯, πππ₯ππ£ π₯ππ ππ π¦ππ₯π£πͺ ππ ππ π π π₯ππ πππ€π₯ππππ₯ππ π ππ π¦ππ₯π£πͺ, ππ πππ π¨ππ ππͺ π₯ππ ππ£ππ ππ ππ (ππ ππ‘π‘πππππππ), πππ π₯πππ π₯ππ ππ πππ π‘ππ ππ ππ¦ππππ£. π½π π£ ππ©πππ‘ππ, π₯π ππππ π ππ¦ππππ£ ππ π₯ππ ππππ₯ππ ππ₯ππ₯ππ€, ππππ:π.π π π β’(πππ‘)β’π‘πππ βπΌππ€π¦π£π πͺπ π¦ πππ§π πππ₯ππ£πππ₯ππ πππ πππππππ πππππππ π π πͺπ π¦π£ π‘ππ ππ π‘πππ. βπππ£πππ€ πππͺ π§ππ£πͺ πππ€ππ π π πͺπ π¦π£ π‘π£π π§ππππ£ πππ ππππβπβ’π π π β’πππ‘β’π‘πππ ππ¦π£ππ₯ππ π, π€π ππ₯βπ€ πππ§ππ€ππππ π₯π πππππ π₯ππ π£ππ₯ππ€ π π£ ππ ππ€ππππ£ π¦π€πππ πππ₯ππ£πππ₯ππ πππ πππππππ πππ£ππ€ π π£ ππ πβ π€ππ£π§ππππ€.
βππππππ π πππΈ π₯π ππ-ππ£ππ ππ¦ππππ£ ππ£π π ππππππ‘π π£π πππͺ ππ π₯ πππ¨ππͺπ€ ππ ππ£ππ. ππ ππ-ππ£ππ ππ¦ππππ£π€ ππ π₯ππ π.π. (π€π¦ππ ππ€ π₯ππ π€π π€π₯ππ£π₯πππ π¨ππ₯π ππ π π ,πππ‘,π‘πππ(ππ₯π.) ππ£π π₯πͺπ‘ππππππͺ π πππͺ ππ£ππ π¨ππ₯πππ π₯ππ π.π. πππ βπππππ. ππ ππππ ππ£π π ππππππ‘π π£π, ππππ π₯ππ πππ₯ππ£πππ₯ππ πππ πππππ€π€ ππ ππ (π.π., πππ, πππ, π π£ πππ ), ππ πππ π¨ππ ππͺ π₯ππ π.π. ππ π¦ππ₯π£πͺ ππ ππ "π", πππ π₯πππ π₯ππ π₯π ππ-ππ£ππ ππ¦ππππ£. π½π π£ ππ©πππ‘ππ: πβ’π π π β’πππ‘β’π‘πππ. βπ π¨ππ§ππ£, π₯ππ ππππ ππ π π ,πππ‘,π‘πππ,πππͺ ππ ππππ£πππ ππ€ ππ πππ₯ππ£πππ₯ππ πππ ππππ ππͺ πͺπ π¦π£ π‘π£π π§ππππ£. πΈππ₯ππ£πππ₯ππ§πππͺ, ππ ππ€ππππ£ π¦π€πππ πππ₯ππ£πππ₯-πππ€ππ π€ππ£π§ππππ€ ππππ πππͺπ‘π π π£ πΎπ π πππ ππ πππ, π¨ππππ πππͺ π ππππ£ ππ π¨ππ£ π£ππ₯ππ€ π π£ ππ£ππ π π‘π₯ππ ππ€.
ππππππ‘π π£π πΈππ£πππππ€ ππ¦π€π₯π πππ£ π€ππ£π§πππ ππ€π,π π π ,πππ‘,π‘πππ(ππ₯π.) πππ π¨π ππ π£ ππ₯π€ ππ©ππππππππ πππ π£πππππππππ₯πͺ. βπ¦π€π₯π πππ£π€ πππ π£ππππ π₯ππ πππ£ππππβπ€ π€π¦π‘π‘π π£π₯ π₯πππ π₯ππ£π π¦ππ π§ππ£ππ π¦π€ ππππππππ€, πππππ¦ππππ π‘ππ ππ, πππππ, πππ π€π ππππ πππππ. π½π π£ ππππππππ₯π ππ€π€ππ€π₯ππππ, πͺπ π¦ πππ πππππ.π π π β’(πππ‘)β’π‘πππ π₯ππ ππππππ‘π π£π πΈππ£πππππ€ ππ¦π€π₯π πππ£ π€ππ£π§πππ ππ π₯ππππ, ππ§πππππππ ππ/π ππ π£ ππ π ππππ πππ’π¦ππ£πππ€, ππππππ₯ πππππππ€, πππππππ ππ€π€π¦ππ€, π π£ π€π‘πππππ π£ππ’π¦ππ€π₯π€. πππ π πππππππ π¨πππ€ππ₯π πππ€π π ππππ£π€ πππ§π ππππ₯ πππ π ππ ππ‘π£πππππ€ππ§π π½πΈβ π,π π π ,πππ‘,π‘πππ(ππ₯π.)π€πππ₯ππ π π₯π ππππ£ππ€π€ ππ πππ π ππ ππππ£ππ€. ππππ₯πππ£ πͺπ π¦ ππππ ππππ‘ π¨ππ₯π ππππππππ πͺπ π¦π£ ππ π ππππ π π£ π£ππ’π¦ππ£π π₯π£ππ§ππ ππ€π€ππ€π₯ππππ, ππππππ‘π π£π πΈππ£πππππ€ ππ€ ππ ππππ₯π₯ππ π₯π πππππ§ππ£πππ π‘π£π ππ‘π₯, π‘π£π πππ€π€ππ πππ π€π¦π‘π‘π π£π₯ π₯π πππ€π¦π£π π π€ππ π π₯π πππ π‘ππππ€πππ₯ π₯π£ππ§ππ ππ©π‘ππ£πππππ ππ π£ πππ π‘ππ€π€πππππ£π€,π-π π π ,πππ‘,π‘πππ(ππ₯π.)
ππ ππππ ππ πππ₯ππ£πππ₯ππ πππ ππππ π,π π π ,πππ‘,π‘πππ.ππ£π π ππππππ‘π π£π, πππππ ππͺ πππ₯ππ£πππ ππ πππ₯ππ£πππ₯ππ πππ πππππ€π€ ππ ππ π‘π£π π§ππππ ππͺ πͺπ π¦π£ π₯πππππ π π‘π£π π§ππππ£. βπ πππ π ππ πππ€ πππππ¦ππ πππ (πππππ₯ππ), πππ (ππ₯ππ£βπ¦π), π π£ πππ (ππ). πΈππ₯ππ£ π₯ππ πππππ€π€ ππ ππ, ππππ π₯ππ ππ π¦ππ₯π£πͺ ππ ππ π π π₯ππ πππ€π₯ππππ₯ππ π, ππ πππ π¨ππ ππͺ π₯ππ ππ£ππ ππ ππ (ππ ππππππ), πππ π₯πππ π₯ππ ππ πππ π‘ππ ππ ππ¦ππππ£. π½π π£ ππ©πππ‘ππ, π₯π ππππ ππ πππ π, πͺπ π¦ πππππ₯ ππππ π,π π π ,πππ‘,π‘πππ. πΌππ€π¦π£π πͺπ π¦π£ π‘ππ ππ π‘πππ π€π¦π‘π‘π π£π₯π€ πππ₯ππ£πππ₯ππ πππ πππππππ, πππ ππ ππ¨ππ£π π π π₯ππ ππππ£πππ€ πππ§π ππ§ππ, ππ€ π£ππ₯ππ€ π§ππ£πͺ ππͺ π‘π£π π§ππππ£ πππ πππ€π₯ππππ₯ππ π. πΈππ₯ππ£πππ₯ππ§πππͺ, ππ ππ€ππππ£ π¦π€πππ πππ₯ππ£πππ₯-πππ€ππ πππππππ π,π π π ,πππ‘,π‘πππ.ππ‘π‘π€ ππ π£ ππ π€π₯-ππππππ₯ππ§π π π£ ππ£ππ πππ₯ππ£πππ₯ππ πππ ππ πππ¦πππππ₯ππ π.